ssEMnet: Serial-Section Electron Microscopy Image Registration Using a Spatial Transformer Network with Learned Features
نویسندگان
چکیده
The alignment of serial-section electron microscopy (ssEM) images is critical for efforts in neuroscience that seek to reconstruct neuronal circuits. However, each ssEM plane contains densely packed structures that vary from one section to the next, which makes matching features across images a challenge. Advances in deep learning has resulted in unprecedented performance in similar computer vision problems, but to our knowledge, they have not been successfully applied to ssEM image co-registration. In this paper, we introduce a novel deep network model that combines a spatial transformer for image deformation and a convolutional autoencoder for unsupervised feature learning for robust ssEM image alignment. This results in improved accuracy and robustness while requiring substantially less user intervention than conventional methods. We evaluate our method by comparing registration quality across several datasets.
منابع مشابه
Adversarial Image Alignment and Interpolation
Volumetric (3d) images are acquired for many scientific and biomedical purposes using imaging methods such as serial section microscopy, CT scans, and MRI. A frequent step in the analysis and reconstruction of such data is the alignment and registration of images that were acquired in succession along a spatial or temporal dimension. For example, in serial section electron microscopy, individua...
متن کاملAssembly of Large Three-Dimensional Volumes from Serial-Section Transmission Electron Microscopy
Serial-section transmission electron microscopy (TEM) is an important imaging modality for studying neuronal connectivity patterns. However, before serial-section TEM images can be used to reconstruct connectivities of neurons, several image registration problems must be addressed. The first problem arises due to the large sample size and limited field of view: each section must be assembled fr...
متن کاملAutomatic landmark correspondence detection for ImageJ
Landmark correspondences can be used for various tasks in image processing such as image alignment, reconstruction of panoramic photographs, object recognition and simultaneous localization and mapping for mobile robots. The computer vision community knows several techniques for extracting and pairwise associating such landmarks using distinctive invariant local image features. Two very success...
متن کاملAs-rigid-as-possible mosaicking and serial section registration of large ssTEM datasets
MOTIVATION Tiled serial section Transmission Electron Microscopy (ssTEM) is increasingly used to describe high-resolution anatomy of large biological specimens. In particular in neurobiology, TEM is indispensable for analysis of synaptic connectivity in the brain. Registration of ssTEM image mosaics has to recover the 3D continuity and geometrical properties of the specimen in presence of vario...
متن کاملEnd-to-End Unsupervised Deformable Image Registration with a Convolutional Neural Network
In this work we propose a deep learning network for deformable image registration (DIRNet). The DIRNet consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler. The ConvNet analyzes a pair of fixed and moving images and outputs parameters for the spatial transformer, which generates the displacement vector field that enables the resampler to warp th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017